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LETTER TO THE EDITOR 

Graph optimisation problems and the Potts glass 
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t Department of Physics, Bar-Ilan University, Ramat-Gan, Israel 52100 
$ Racah Institute of Physics, Hebrew University, Jerusalem, Israel 

Received 21 April 1987 

Abstract. The NP-complete problems of partitioning and colouring of random graphs, 
with p partitions and colours respectively, are mapped onto the statistical mechanical 
problem of p-state Potts glasses. An estimate of the cost functions of these optimisation 
problems has been derived using the Potts glass mean-field theory. This estimate applies 
to dense graphs in the thermodynamic limit. An exact expression for the cost function in 
the large-p limit is given. 

Methods and results of spin-glass theory have recently been applied to the study of 
complex optimisation problems. A particularly simple application [ 13 has been the 
graph bisection problem [2]. It has been shown that this problem, which is NP 
complete, is equivalent to an infinite-range spin glass. A graph consists of a set of 
vertices V = { V I ,  V,, . . , , V,} and a set of edges E = {( V,, v)}. I! one version of the 
problem the graph is assumed to be random: each edge in E has a probability c of 
being connected, and 1 - c of being disconnected. The problem consists of dividing 
V into two subsets of vertices VI and V, of equal size so that the number of edges 
connecting VI and V, is minimised. In the case of dense graphs, i.e. c and 1 - c are 
of 0(1), the cost function of the problem is directly related [ l ]  to the ground-state 
energy of the Sherrington-Kirkpatrick ( SK) Ising spin-glass model [3]. 

In this letter we extend the result of Fu and Anderson [ l ]  to a more general class 
of graph optimisation problems which have numerous applications in engineering: 
graph partitioning and graph colouring [2]. These NP-complete problems are mapped 
onto infinite-range Potts glass (PG) models [4-61. The results of mean-field theory 
(MFT) [5,6] as well as numerical simulations of the Potts glass (PG) are applied to 
study the cost function of these graph optimisation problems. 

We consider here the following problems. 
( i )  Graph  partitioning. A random graph is partitioned into p subsets of vertices 

V, , V,, . . . , V,, of equal size, so that the total number of edges that connect vertices 
which belong to different subsets is minimised. The case o fp  = 2 is the above-mentioned 
graph bisection problem. The average cost function C ( p ,  N )  of the problem is the 
average minimum number of edges that connect vertices of different sets. 

(ii) Graph  colouring. Here the random graph is divided into p sets of vertices of 
equal size in such a way that the total number of edges connecting vertices which 
belong to the same subset (i.e. having the same colour) is minimised. Here the cost 
function C ’ ( p ,  N) is the average minimim number of edges that connect vertices of 
the same colour. These two optimisation problems, the graph partitioning and the 
graph colouring problems are not independent. 
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It is straightforward to show that the average cost functions obey 

C ' ( p ,  N, c ) = C ( p ,  N, l - ~ ) - t N * [ l - l / ~ - ~ ( l - l / N ) ]  ( 1 )  

where c is the concentration of edges. An interesting problem in graph colouring is 
the value of the chromatic number, pa. This number is the minimum number of colours 
which have to be introduced (for a given graph) in order that it will be possible to 
divide the graph without connecting vertices of the same colour. In our notation, the 
average pa is the minimum value of p for which C'(p, N, c)  vanishes. 

The problem of graph partitioning can be mapped onto a system of N interacting 
Potts spins, {ui,  i = 1 , .  . . , N } ,  where each ui can take the values 1 , 2 , .  . . ,4p. The 
Hamiltonian of the system is given by 

where each Jij is a quenched random variable with the distribution 

P ( J v ) =  cS(J i j - l )+ ( l - c )S (J , ) .  (3) 

The restriction of partitioning to p subgraphs of equal size ( N / p )  implies the following 
p global constraints: 

r = 1 , 2  ,..., p .  (4) 
l N  
N i - 1  

m r = -  1 ( P S , , , - I ) = O  

In order to prove the mapping let us denote by N ,  the total number of edges 
connecting vertices inside the subgraphs in a given partitioning, and by No the total 
number of edges connecting vertices belonging to different subgraphs. The average 
total number of edges equals ( N -  l )c /2 ,  hence 

N ,  + No = + N (  N - 1 )  c. ( 5 )  

Each bond inside a subgraph contributes - ( p - 1 )  to H whereas a bond connecting 
vertices of different subgraphs contributes + 1 .  Therefore, 

( 6 )  No - N,(  p - 1)  = H. 
Equations ( 5 )  and ( 6 )  yield, for the cost function C, 

N 2 ( p - 1 ) c  N ( p - 1 ) c  H C=No= - 
2P 2P P 

+-. ( 7 )  

The first term on the RHS of equation ( 7 )  represents the cost in the case of random 
partitioning into p subgraphs, each of which will contain c ( N / p ) [ ( N / p )  - 1]/2 bonds. 
This yields a cost which equals 

+ c N ( N - l ) - ; p c -  N (  - - 1  N ) = N 2 y ) C  

P P  

This is consistent with equation ( 7 )  since, in a random configuration, 

where angle brackets denote an average over configurations. Thus the (negative) 
contribution H / p  in (7) represents the reduction in cost by the optimisation of the 
partitioning. 
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The graph partitioning problem is then equivalent to finding the ground state of 
the Hamiltonian (2) subject to the constraints (4). Instead of considering the rigid 
constraints (4) it is sometimes convenient to represent them by soft constraints. This 
amounts to adding to the Hamiltonian, equation (2), the term 

with m, defined by (4). This is equivalent to using the Hamiltonian (2) with the 
following distribution of bonds: 

P ( J v )  = C S ( J ,  - 1 + g) + ( 1  - c ) 6 ( J ,  + 8). (10) 

For sufficiently large g this modification will ensure that the optimised partitioning 
obeys the constraints (4). 

The cost in the graph colouring problem is N I .  Minimising NI is equivalent to 
maximising No of the same graph, or minimising No of the graph which is formed by 
the missing edges in the original graph. The concentration of the missing bonds is 1 - c. 

Using ( 5 )  and the fact that the number of all possible edges connecting the p groups 
is N2(1 - l /p)/2,  one obtains the relation ( 1 ) .  

Although the Hamiltonian (2) describes an infinite-ranged system, calculating its 
ground-state energy is a complex task. Here we will focus on the case of dense graphs 
defined by c and 1 - c being of order unity, in the limit N + CO. In this case, a direct 
connection can be made between the Hamiltonian (2) and the mean-field theory (MFT) 

of infinite-ranged Potts glasses [ 5 ] .  
The argument for the connection with the MFT is the same as in the case of Fu and 

Anderson. When the average number of bonds per site is proportional to N, the local 
fields are sums of N terms and are not sensitive (in the N + CO limit) to the details of 
the distribution of the individual .TI,. The macroscopic properties of the system depend 
only on the first two moments of the distribution. Using the distribution (lo), the first 
moment is 

Jo = (( J,,)) = - g + c. 

J 2  = ((52,)) - ((J,))* = c( 1 - c ) .  

( 1 1 )  

Double angle brackets denote an average of P ( J , ) .  The second moment is 

(12) 

Therefore, in the case of dense graphs the cost function is identical, in the N+CO 
limit, to an infinite-range PG Hamiltonian of the form (2) with a Gaussian distribution 
of bonds: 

where Jo and J are given by equations ( 1 1 )  and (12). Furthermore, once Jo is made 
sufficiently negative that the ground state obeys the constraints (4), the energy E of 
the Hamiltonian (2) with Jij of (13 )  is independent of the magnitude of J o ,  since the 
latter couples only to the ‘magnetisations’ m, which vanish. In such a case, 

E = -JN3’2 U (  p ,  N )  (14) 

where U ( p ) =  limN+m U ( p ,  N )  is a positive number of 0(1) which does not depend 
on J or Jo (i.e. on c and g). Substituting equations ( 1 3 )  and (14) in equation (7) 
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yields, for the N + w  limit, 

For the graph colouring problem one obtains, using equations (1) and ( I S ) ,  

N 2 C  3 / 2  I / 2  1 - 1 / 2  C’=--N c ( c)  
2P P 

Thus the non-trivial correction to the cost function is the same for both the partitioning 
and the colouring problems in the case of dense graphs and the N+oo limit, and it 
is simply related to the ground-state energy of the infinite-range PG with Gaussian bonds. 

In order to evaluate the ensemble-averaged value of U ( p )  we apply the results of 
the replica MFT, previously developed [5 ,6]  for evaluating the PG free energy [5]. The 
ensemble-averaged free energy per site is defined as 

1 f = --((In Tr exp( -pH))) 
N p  {m, l  

where H is given by ( 2 )  and the ensemble average is performed over the distribution 
of bonds, equation (13). The parameter p is the inverse temperature. When p 
approaches infinity f approaches the minimum energy per spin, i.e. -JN”’ U (  p )  (see 
equation (14)). Using Parisi’s replica symmetry breaking (RSB)  theory [7] with an 
ansatz of a one step of RSB [ 5 , 6 ]  one obtains the following expression for .f: 

The ‘order parameters’ q and x, 0 =s q S 1 ,  0 s x s 1,  are determined by the equations 
af/ax = af/aq = 0. In the limit of p + CO, q + 1,  x +  0 and equation (18) reduces to 

(19) 

The parameter a = limp,,, (xp) is determined via a U / a a  = 0. We have calculated U (  p )  
by numerical maximisation of (19). A few examples are U = 1.39, 2.43 and 6.02 for 
p = 3, 5 and 15 respectively. The results for general p are shown in figure 1 .  

An interesting limit is the case of p + 00. Evaluating equation (19) by a saddle-point 
method one obtains 

U = Iim ~ ( p )  = ( p  In p ) ’ ” .  ( 2 0 )  
P ’ Z  

At finite temperature T = p - ’  the free energy (18) exhibits a phase transition from a 
‘high-temperature’ value f/ JN”’ = - T In p - p (  p - 1)/4, p < p c ,  to the ‘low- 
temperature’ value f /  JN”’ = - U,, p > pc.  The value of pc is 

pc = 2(1n p / ~ p ) ” ’ .  (21) 
The results (18)-(21) are exact in the large-p limit. In the case of finite p ,  p > 2 ,  

the ‘one-step’ ansatz (and hence the result (18)) is exact only at high and intermediate 
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Figure 1. Results of numerical maximisation of equation (19). The results show the 
convergence of U to its large-p limit ( p  In P ) ” ~ ,  equation (20). 

temperatures, but breaks down below T = T2 < T,, where the nature of the RSB is more 
complex. Nevertheless the corrections due to this additional complication are expected 
to remain small even as T + 0. This is particularly true for large values of p, where 
the actual values of U(p )  are expected to be very close to the large-p result. Note 
also that T2 + 0 as p + CO. 

In order to check the quality of the approximation (19) for U (  p )  we have performed 
Monte Carlo simulations of the ground-state energy E of the infinite-range Potts glass, 
equations (2) and (13), with p = 7.  In the simulations, systems of sizes N = 35, 70 and 
200 were slowly annealed from high temperatures using a heat-bath algorithm. The 
results for E = -U are shown plotted against N in figure 2. 

In the simulation, the value of J has been chosen for convenience to be J = 1/JN. 
As for Jo ,  the MFT predicts [4] that in the case of Jo = 0 the PG ground state possesses 
a ferromagnetic (FM) long-range order, thus violating the constraints. Putting JON = Io, 
the FM order is suppressed at a temperature T if [4] 

.io< -P(p-2)/2.  (22) 
Note that in the bipartitioning case ( p  = 2), choosing Jo = 0 is sufficient to guarantee 
that the ground state obeys the constraint. This prediction has been borne out by our 
simulations. Choosing Jo = 0 resulted in an FM ground state. Using small negative 
values for J o ,  a spin-glass state has been achieved at intermediate temperature Ta 1.3 
but an FM order appeared at lower temperatures. In practice, choosing Joa - 5  was 
sufficient to guarantee the suppression of the magnetisation in the temperature regime 
T 3  0.4, in which significant thermal fluctuations were still observed. A detailed 
presentation of the finite-temperature results of the simulations will be given elsewhere. 
Although the statistical errors are not negligible, the results seem to be consistent with 
a finite-size correction of E, of order 1/N. This should be contrasted with the 1 / v ”  
corrections seen in simulations of the Ising spin glass [8]. The fact that the finite-size 
corrections seem to be smaller here may be related? to the fact that there are less 

t We thank M Mizard for a discussion on this point. 
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Figure 2. Monte Carlo simulation of the ground-state energy (per spin) of the seven-state 
infinite-range Potts glass, equations (2) and (13). The choice of J and J,, is discussed in 
the text. N denotes the system size, and x and W denote the values of E (in the 
thermodynamic limit) according to the one-step MFT [ 5 , 6 ]  and the replica symmetric MFT 
[4], respectively. 

marginal fluctuations in the ordered state of the Potts model relative to the Ising case 
[5,6]. The results of figure 2 yield limN+m U (  p = 7)  = 3.15 k0.05 which differs by only 
4% from the ‘one-step’ approximation, U ( 7 )  = 3.3. Part of this discrepancy may be 
due to incomplete equilibration of the systems in the simulations. Note that the naive 
MFT (the replica symmetric theory) [4] yields a much worse estimate for U ( U ( 7 )  = 
3.56). As mentioned above, the discrepancy between equation (19) (figure 1) and the 
actual value of U ( p )  is expected to decrease as p increases. 

Returning to graph partitioning we obtain for the ensemble-averaged cost function 
in the large-p limit, 

lim lim C ( p ,  N, c) = f N 2 c -  N3’2 ( c ( l - c ) l n p ) ” 2  
P p-m N-m 

(see equations (15) and (20)). In the case of finite large p ,  the result (15), together 
with equation (19), is expected to yield a good approximation for the cost function. 

In the case of graph colouring, equation (16) yields 

Note that the positive random contribution to the cost decreases more rapidly with p 
than the contribution from the optimisation. The two terms cancel each other at 

Po -( N ’) . 
41n N 1-c 

It is tempting to identify po as the chromatic number. However, equation (25) violates 
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the rigorous bounds [9,10] for the chromatic number p o  for all values of c: 

-ln(J-) N <p,<--ln(J-) N 
21n N 1-c  1 n N  1-c  

valid for the case of dense graphs. Although we obtain the correct scaling with N, 
namely p o x  N/ln N, the coefficient predicted by (25) is incorrect. The likely reason 
for this failure is that the mapping between the graph problem and the PG with Gaussian 
bonds (equation (13)) breaks down when p is as large as N/ln N. In this case, the 
real bond distribution (equation (10)) must be taken into account. 

In conclusion, we have presented in this letter a mapping between graph partitioning 
and graph colouring problems (with p partitions or colours) and the statistical 
mechanical problems of p-state Potts glasses. The ensemble-averaged cost functions 
of dense graphs can be calculated using the MFT of Potts glasses. Using the results of 
the MFT, an exact expression (equations (23) and (24)) for the average cost function 
in the limit of large p has been derived. To our knowledge this result is new. 

In addition, we have derived an estimate of the cost function for all p > 2 (in the 
thermodynamic limit), based on an approximate MFT. This estimate is believed to be 
within only a few per cent of the exact cost for all values of p > 2 .  It would be 
interesting to compare these results with numerical optimisation of the graph problems 
performed by either heuristic algorithms or simulated annealing. 

Discussion with D J Gross, D S Johnson, M MCzard and E Shamir are gratefully 
acknowledged. We also thank E Shamir for bring references [ 9 ]  and [ lo]  to our 
attention. The research has been supported in part by the Fund for Basic Research 
of the Israeli Academy of Science and Humanities and by the US-Israel Binational 
Science Foundation. 

Note added. After the completion of this work, we received an interesting preprint by P Y Lai and Y Y 
Goldschmidt which also discusses the mapping between the graph partitioning and colouring problems and 
the Potts glass. 
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